热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

基于TensorFlow的鸢尾花数据集神经网络模型深度解析

篇首语:本文由编程笔记#小编为大家整理,主要介绍了深度学习框架Tensorflow模型分析相关的知识,希望对你有一定的参考价值。 目录 1 快速入门模型2 相关的库的导入3 数据展示和划分4 skl

篇首语:本文由编程笔记#小编为大家整理,主要介绍了深度学习框架Tensorflow模型分析相关的知识,希望对你有一定的参考价值。



目录


  • 1 快速入门模型
  • 2 相关的库的导入
  • 3 数据展示和划分
  • 4 sklearn实现
  • 5 tf.keras实现
  • 6 总结




1 快速入门模型

机器学习鸢尾花数据集分析:https://blog.csdn.net/ZGL_cyy/article/details/126924746
机器学习k近邻算法鸢尾花种类预测:https://blog.csdn.net/ZGL_cyy/article/details/126966990

我们通过鸢尾花分类案例,来给大家介绍tf.keras的基本使用流程。tf.keras使用tensorflow中的高级接口,我们调用它即可完成:


  1. 导入和解析数据集
  2. 构建模型
  3. 使用样本数据训练该模型
  4. 评估模型的效果。

由于与scikit -learn的相似性,接下来我们将通过将Keras与scikit -learn进行比较,介绍tf.Keras的相关使用方法。


2 相关的库的导入

在这里使用sklearn和tf.keras完成鸢尾花分类,导入相关的工具包:

# 绘图
import seaborn as sns
# 数值计算
import numpy as np
# sklearn中的相关工具
# 划分训练集和测试集
from sklearn.model_selection import train_test_split
# 逻辑回归
from sklearn.linear_model import LogisticRegressionCV
# tf.keras中使用的相关工具
# 用于模型搭建
from tensorflow.keras.models import Sequential
# 构建模型的层和激活方法
from tensorflow.keras.layers import Dense, Activation
# 数据处理的辅助工具
from tensorflow.keras import utils

3 数据展示和划分

利用seborn导入相关的数据,iris数据以dataFrame的方式在seaborn进行存储,我们读取后并进行展示:

# 读取数据
iris = sns.load_dataset("iris")
# 展示数据的前五行
iris.head()

另外,利用seaborn中pairplot函数探索数据特征间的关系:

# 将数据之间的关系进行可视化
sns.pairplot(iris, hue='species')

将数据划分为训练集和测试集:从iris dataframe中提取原始数据,将花瓣和萼片数据保存在数组X中,标签保存在相应的数组y中:

# 花瓣和花萼的数据
X = iris.values[:, :4]
# 标签值
y = iris.values[:, 4]

利用train_test_split完成数据集划分:

# 将数据集划分为训练集和测试集
train_X, test_X, train_y, test_y = train_test_split(X, y, train_size=0.5, test_size=0.5, random_state=0)

接下来,我们就可以使用sklearn和tf.keras来完成预测


4 sklearn实现

利用逻辑回归的分类器,并使用交叉验证的方法来选择最优的超参数,实例化LogisticRegressionCV分类器,并使用fit方法进行训练:

# 实例化分类器
lr = LogisticRegressionCV()
# 训练
lr.fit(train_X, train_y)

利用训练好的分类器进行预测,并计算准确率:

# 计算准确率并进行打印
print("Accuracy = :.2f".format(lr.score(test_X, test_y)))

逻辑回归的准确率为:

Accuracy = 0.93

5 tf.keras实现

在sklearn中我们只要实例化分类器并利用fit方法进行训练,最后衡量它的性能就可以了,那在tf.keras中与在sklearn非常相似,不同的是:


  • 构建分类器时需要进行模型搭建
  • 数据采集时,sklearn可以接收字符串型的标签,如:“setosa”,但是在tf.keras中需要对标签值进行热编码,如下所示:

有很多方法可以实现热编码,比如pandas中的get_dummies(),在这里我们使用tf.keras中的方法进行热编码:

# 进行热编码
def one_hot_encode_object_array(arr):
# 去重获取全部的类别
uniques, ids = np.unique(arr, return_inverse=True)
# 返回热编码的结果
return utils.to_categorical(ids, len(uniques))

接下来对标签值进行热编码:

# 训练集热编码
train_y_ohe = one_hot_encode_object_array(train_y)
# 测试集热编码
test_y_ohe = one_hot_encode_object_array(test_y)

在sklearn中,模型都是现成的。tf.Keras是一个神经网络库,我们需要根据数据和标签值构建神经网络。神经网络可以发现特征与标签之间的复杂关系。神经网络是一个高度结构化的图,其中包含一个或多个隐藏层。每个隐藏层都包含一个或多个神经元。神经网络有多种类别,该程序使用的是密集型神经网络,也称为全连接神经网络:一个层中的神经元将从上一层中的每个神经元获取输入连接。例如,图 2 显示了一个密集型神经网络,其中包含 1 个输入层、2 个隐藏层以及 1 个输出层,如下图所示:

上图 中的模型经过训练并馈送未标记的样本时,它会产生 3 个预测结果:相应鸢尾花属于指定品种的可能性。对于该示例,输出预测结果的总和是 1.0。该预测结果分解如下:山鸢尾为 0.02,变色鸢尾为 0.95,维吉尼亚鸢尾为 0.03。这意味着该模型预测某个无标签鸢尾花样本是变色鸢尾的概率为 95%。

TensorFlow tf.keras API 是创建模型和层的首选方式。通过该 API,您可以轻松地构建模型并进行实验,而将所有部分连接在一起的复杂工作则由 Keras 处理。

tf.keras.Sequential 模型是层的线性堆叠。该模型的构造函数会采用一系列层实例;在本示例中,采用的是 2 个密集层(分别包含 10 个节点)以及 1 个输出层(包含 3 个代表标签预测的节点)。第一个层的 input_shape 参数对应该数据集中的特征数量:

# 利用sequential方式构建模型
model = Sequential([
# 隐藏层1,激活函数是relu,输入大小有input_shape指定
Dense(10, activation="relu", input_shape=(4,)),
# 隐藏层2,激活函数是relu
Dense(10, activation="relu"),
# 输出层
Dense(3,activation="softmax")
])

通过model.summary可以查看模型的架构:

Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense (Dense) (None, 10) 50
_________________________________________________________________
dense_1 (Dense) (None, 10) 110
_________________________________________________________________
dense_2 (Dense) (None, 3) 33
=================================================================
Total params: 193
Trainable params: 193
Non-trainable params: 0
_________________________________________________________________

激活函数可决定层中每个节点的输出形状。这些非线性关系很重要,如果没有它们,模型将等同于单个层。激活函数有很多,但隐藏层通常使用 ReLU。

隐藏层和神经元的理想数量取决于问题和数据集。与机器学习的多个方面一样,选择最佳的神经网络形状需要一定的知识水平和实验基础。一般来说,增加隐藏层和神经元的数量通常会产生更强大的模型,而这需要更多数据才能有效地进行训练。

在训练和评估阶段,我们都需要计算模型的损失。这样可以衡量模型的预测结果与预期标签有多大偏差,也就是说,模型的效果有多差。我们希望尽可能减小或优化这个值,所以我们设置优化策略和损失函数,以及模型精度的计算方法:

# 设置模型的相关参数:优化器,损失函数和评价指标
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=["accuracy"])

接下来与在sklearn中相同,分别调用fit和predict方法进行预测即可。

# 模型训练:epochs,训练样本送入到网络中的次数,batch_size:每次训练的送入到网络中的样本个数
model.fit(train_X, train_y_ohe, epochs=10, batch_size=1, verbose=1);

上述代码完成的是:


  1. 迭代每个epoch。通过一次数据集即为一个epoch。
  2. 在一个epoch中,遍历训练 Dataset 中的每个样本,并获取样本的特征 (x) 和标签 (y)。
  3. 根据样本的特征进行预测,并比较预测结果和标签。衡量预测结果的不准确性,并使用所得的值计算模型的损失和梯度。
  4. 使用 optimizer 更新模型的变量。
  5. 对每个epoch重复执行以上步骤,直到模型训练完成。

训练过程展示如下:

Epoch 1/10
75/75 [==============================] - 0s 616us/step - loss: 0.0585 - accuracy: 0.9733
Epoch 2/10
75/75 [==============================] - 0s 535us/step - loss: 0.0541 - accuracy: 0.9867
Epoch 3/10
75/75 [==============================] - 0s 545us/step - loss: 0.0650 - accuracy: 0.9733
Epoch 4/10
75/75 [==============================] - 0s 542us/step - loss: 0.0865 - accuracy: 0.9733
Epoch 5/10
75/75 [==============================] - 0s 510us/step - loss: 0.0607 - accuracy: 0.9733
Epoch 6/10
75/75 [==============================] - 0s 659us/step - loss: 0.0735 - accuracy: 0.9733
Epoch 7/10
75/75 [==============================] - 0s 497us/step - loss: 0.0691 - accuracy: 0.9600
Epoch 8/10
75/75 [==============================] - 0s 497us/step - loss: 0.0724 - accuracy: 0.9733
Epoch 9/10
75/75 [==============================] - 0s 493us/step - loss: 0.0645 - accuracy: 0.9600
Epoch 10/10
75/75 [==============================] - 0s 482us/step - loss: 0.0660 - accuracy: 0.9867

与sklearn中不同,对训练好的模型进行评估时,与sklearn.score方法对应的是tf.keras.evaluate()方法,返回的是损失函数和在compile模型时要求的指标:

# 计算模型的损失和准确率
loss, accuracy = model.evaluate(test_X, test_y_ohe, verbose=1)
print("Accuracy = :.2f".format(accuracy))

分类器的准确率为:

3/3 [==============================] - 0s 591us/step - loss: 0.1031 - accuracy: 0.9733
Accuracy = 0.97

6 总结

  1. 使用tf.keras进行分类时的主要流程:数据处理-构建模型-模型训练-模型验证
  2. tf.keras中构建模型可通过squential()来实现并利用.fit()方法进行训练
  3. 使用evaluate()方法计算损失函数和准确率

推荐阅读
  • 资源推荐 | TensorFlow官方中文教程助力英语非母语者学习
    来源:机器之心。本文详细介绍了TensorFlow官方提供的中文版教程和指南,帮助开发者更好地理解和应用这一强大的开源机器学习平台。 ... [详细]
  • 技术分享:从动态网站提取站点密钥的解决方案
    本文探讨了如何从动态网站中提取站点密钥,特别是针对验证码(reCAPTCHA)的处理方法。通过结合Selenium和requests库,提供了详细的代码示例和优化建议。 ... [详细]
  • 毕业设计:基于机器学习与深度学习的垃圾邮件(短信)分类算法实现
    本文详细介绍了如何使用机器学习和深度学习技术对垃圾邮件和短信进行分类。内容涵盖从数据集介绍、预处理、特征提取到模型训练与评估的完整流程,并提供了具体的代码示例和实验结果。 ... [详细]
  • 探索如何使用公共数据集为您的编程项目提供动力。无论您是编程新手还是有经验的开发者,本文将为您提供实用建议和资源,帮助您启动并运行一个创新的数据驱动型项目。 ... [详细]
  • 尽管深度学习带来了广泛的应用前景,其训练通常需要强大的计算资源。然而,并非所有开发者都能负担得起高性能服务器或专用硬件。本文探讨了如何在有限的硬件条件下(如ARM CPU)高效运行深度神经网络,特别是通过选择合适的工具和框架来加速模型推理。 ... [详细]
  • golang常用库:配置文件解析库/管理工具viper使用
    golang常用库:配置文件解析库管理工具-viper使用-一、viper简介viper配置管理解析库,是由大神SteveFrancia开发,他在google领导着golang的 ... [详细]
  • Java 中的 BigDecimal pow()方法,示例 ... [详细]
  • 机器学习中的相似度度量与模型优化
    本文探讨了机器学习中常见的相似度度量方法,包括余弦相似度、欧氏距离和马氏距离,并详细介绍了如何通过选择合适的模型复杂度和正则化来提高模型的泛化能力。此外,文章还涵盖了模型评估的各种方法和指标,以及不同分类器的工作原理和应用场景。 ... [详细]
  • Google最新推出的嵌入AI技术的便携式相机Clips现已上架,旨在通过人工智能技术自动捕捉用户生活中值得纪念的时刻,帮助人们减少照片数量过多的问题。 ... [详细]
  • Coursera ML 机器学习
    2019独角兽企业重金招聘Python工程师标准线性回归算法计算过程CostFunction梯度下降算法多变量回归![选择特征](https:static.oschina.n ... [详细]
  • Python 工具推荐 | PyHubWeekly 第二十一期:提升命令行体验的五大工具
    本期 PyHubWeekly 为大家精选了 GitHub 上五个优秀的 Python 工具,涵盖金融数据可视化、终端美化、国际化支持、图像增强和远程 Shell 环境配置。欢迎关注并参与项目。 ... [详细]
  • 本文旨在探讨如何利用决策树算法实现对男女性别的分类。通过引入信息熵和信息增益的概念,结合具体的数据集,详细介绍了决策树的构建过程,并展示了其在实际应用中的效果。 ... [详细]
  • Explore how Matterverse is redefining the metaverse experience, creating immersive and meaningful virtual environments that foster genuine connections and economic opportunities. ... [详细]
  • 本文深入探讨了基于Pairwise和Listwise方法的排序学习,结合PaddlePaddle平台提供的丰富运算组件,详细介绍了如何通过这些方法构建高效、精准的排序模型。文章不仅涵盖了基础理论,还提供了实际应用场景和技术实现细节。 ... [详细]
  • 深入解析Java枚举及其高级特性
    本文详细介绍了Java枚举的概念、语法、使用规则和应用场景,并探讨了其在实际编程中的高级应用。所有相关内容已收录于GitHub仓库[JavaLearningmanual](https://github.com/Ziphtracks/JavaLearningmanual),欢迎Star并持续关注。 ... [详细]
author-avatar
肖筱童2502874877
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有